Reversible - through calmodulin - electrostatic interactions between basic residues on proteins and acidic lipids in the plasma membrane.

نویسندگان

  • Stuart McLaughlin
  • Gyöngyi Hangyás-Mihályné
  • Irina Zaitseva
  • Urszula Golebiewska
چکیده

The inner leaflet of a typical mammalian plasma membrane contains 20-30% univalent PS (phosphatidylserine) and 1% multivalent PtdIns(4,5)P(2). Numerous proteins have clusters of basic (or basic/hydrophobic) residues that bind to these acidic lipids. The intracellular effector CaM (calmodulin) can reverse this binding on a wide variety of proteins, including MARCKS (myristoylated alanine-rich C kinase substrate), GAP43 (growth-associated protein 43, also known as neuromodulin), gravin, GRK5 (G-protein-coupled receptor kinase 5), the NMDA (N-methyl-D-aspartate) receptor and the ErbB family. We used the first principles of physics, incorporating atomic models and the Poisson-Boltzmann equation, to describe how the basic effector domain of MARCKS binds electrostatically to acidic lipids on the plasma membrane. The theoretical calculations show the basic cluster produces a local positive electrostatic potential that should laterally sequester PtdIns(4,5)P(2), even when univalent acidic lipids are present at a physiologically relevant 100-fold excess; four independent experimental measurements confirm this prediction. Ca(2+)/CaM binds with high affinity (K(d) approximately 10nM) to this domain and releases the PtdIns(4,5)P(2). MARCKS, a major PKC (protein kinase C) substrate, is present at concentrations comparable with those of PtdIns(4,5)P(2) (approx. 10 microM) in many cell types. Thus MARCKS can act as a reversible PtdIns(4,5)P(2) buffer, binding PtdIns(4,5)P(2) in a quiescent cell, and releasing it locally when the intracellular Ca(2+) concentration increases. This reversible sequestration is important because PtdIns(4,5)P(2) plays many roles in cell biology. Less is known about the role of CaM-mediated reversible membrane binding of basic/hydrophobic clusters for the other proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrostatic anchoring precedes stable membrane attachment of SNAP25/SNAP23 to the plasma membrane

The SNAREs SNAP25 and SNAP23 are proteins that are initially cytosolic after translation, but then become stably attached to the cell membrane through palmitoylation of cysteine residues. For palmitoylation to occur, membrane association is a prerequisite, but it is unclear which motif may increase the affinities of the proteins for the target membrane. In experiments with rat neuroendocrine ce...

متن کامل

An Electrostatic Engine Model for Autoinhibition and Activation of the Epidermal Growth Factor Receptor (EGFR/ErbB) Family

We propose a new mechanism to explain autoinhibition of the epidermal growth factor receptor (EGFR/ErbB) family of receptor tyrosine kinases based on a structural model that postulates both their juxtamembrane and protein tyrosine kinase domains bind electrostatically to acidic lipids in the plasma membrane, restricting access of the kinase domain to substrate tyrosines. Ligand-induced dimeriza...

متن کامل

Deletions in the acidic lipid-binding region of the plasma membrane Ca2+ pump. A mutant with high affinity for Ca2+ resembling the acidic lipid-activated enzyme.

The C-terminal segment of the loop between transmembrane helices 2 and 3 (A(L) region) of the plasma membrane Ca(2+) pump (PMCA) is not conserved in other P-ATPases. Part of this region, just upstream from the third transmembrane domain, has been associated with activation of the PMCA by acidic lipids. cDNAs coding for mutants of the Ca(2+) pump isoform h4xb with deletions in the A(L) region we...

متن کامل

Electrodiffusion of lipids on membrane surfaces.

Lateral translocation of lipids and proteins is a universal process on membrane surfaces. Local aggregation or organization of lipids and proteins can be induced when the random lateral motion is mediated by the electrostatic interactions and membrane curvature. Although the lateral diffusion rates of lipids on membranes of various compositions are measured and the electrostatic free energies o...

متن کامل

Ca induces clustering of membrane proteins in the plasma membrane via electrostatic interactions

Membrane proteins and membrane lipids are frequently organized in submicron-sized domains within cellular membranes. Factors thought to be responsible for domain formation include lipid–lipid interactions, lipid–protein interactions and protein–protein interactions. However, it is unclear whether the domain structure is regulated by other factors such as divalent cations. Here, we have examined...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical Society symposium

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2005